Approximate Series Solution of Nonlinear Singular Boundary Value Problems Arising in Physiology

نویسندگان

  • Randhir Singh
  • Jitendra Kumar
  • Gnaneshwar Nelakanti
چکیده

We introduce an efficient recursive scheme based on Adomian decomposition method (ADM) for solving nonlinear singular boundary value problems. This approach is based on a modification of the ADM; here we use all the boundary conditions to derive an integral equation before establishing the recursive scheme for the solution components. In fact, we develop the recursive scheme without any undetermined coefficients while computing the solution components. Unlike the classical ADM, the proposed method avoids solving a sequence of nonlinear algebraic or transcendental equations for the undetermined coefficients. The approximate solution is obtained in the form of series with easily calculable components. The uniqueness of the solution is discussed. The convergence and error analysis of the proposed method are also established. The accuracy and reliability of the proposed method are examined by four numerical examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory

In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to...

متن کامل

Applying Legendre Wavelet Method with Regularization for a Class of Singular Boundary Value Problems

In this paper Legendre wavelet bases have been used for finding approximate solutions to singular boundary value problems arising in physiology. When the number of basis functions are increased the algebraic system of equations would be ill-conditioned (because of the singularity), to overcome this for large $M$, we use some kind of Tikhonov regularization. Examples from applied sciences are pr...

متن کامل

Numerical Study on the Reaction Cum Diffusion Process in a Spherical Biocatalyst

In chemical engineering, several processes are represented by singular boundary value problems. In general, classical numerical methods fail to produce good approximations for the singular boundary value problems. In this paper, Chebyshev finite difference (ChFD) method and DTM-Pad´e method, which is a combination of differential transform method (DTM) and Pad´e approximant, are applied for sol...

متن کامل

Nature Inspired Computational Technique for the Numerical Solution of Nonlinear Singular Boundary Value Problems Arising in Physiology

We present a hybrid heuristic computing method for the numerical solution of nonlinear singular boundary value problems arising in physiology. The approximate solution is deduced as a linear combination of some log sigmoid basis functions. A fitness function representing the sum of the mean square error of the given nonlinear ordinary differential equation (ODE) and its boundary conditions is f...

متن کامل

A novel technique for a class of singular boundary value problems

In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014